Unit 3 Guided Notes: Synthetic Division

- We only know how to solve polynomials with a degree of _____ (_________ equations)
- - The degree of the polynomial decreases by one each time you divide
- - If the remainder is not zero, then the expression is not a factor
- To do synthetic division, you must have a ______ for every power of x
 - For example, if your equation is missing an x² rewrite with a _____
- Synthetic Division can only be used if the coefficient of x=_____

Example #1: $(x^3 - 5x^2 - 2x + 24) \div (x - 3)$

<u>Step 1</u>: Change the sign of factor:

<u>Step 2:</u> Write out the coefficients of each term.

<u>Step 3:</u> Bring down the first term. Multiply ___ by this term, then add.

Is (x - 8) a factor of $(x^2 - 7x - 11)$? YES or NO

Example #2: $(x^3 - 10x^2 + 20x + 26) \div (x - 5)$

<u>Step 1</u>: Change the sign of factor:

<u>Step 2:</u> Write out the coefficients of each term.

<u>Step 3:</u> Bring down the first term. Multiply ___ by this term, then add.

Is (x - 5) a factor of $x^3 - 10x^2 + 20x + 26$? YES or NO

Example #3: $(x^3 - 2x^2 - 11x - 6) \div (x + 2)$

<u>Step 1</u>: Change the sign of factor:

<u>Step 2:</u> Write out the coefficients of each term.

<u>Step 3:</u> Bring down the first term. Multiply ___ by this term, then add.

Is (x + 2) a factor of $x^3 - 2x^2 - 11x - 6$? YES or NO

Example #4: $(x^3 - 86x - 45) \div (x + 9)$

<u>Step 1</u>: Change the sign of factor:

<u>Step 2:</u> Write out the coefficients of each term.

<u>Step 3:</u> Bring down the first term. Multiply ___ by this term, then add.

Is (x + 9) a factor of $x^3 - 86x - 45$? YES or NO

Example #5: $(2x^3 + 28x^2 + 86x + 60) \div (x + 4)$

Step 1: Change the sign of factor:

<u>Step 2:</u> Write out the coefficients of each term.

<u>Step 3:</u> Bring down the first term. Multiply ___ by this term, then add.

