- We only know how to solve polynomials with a degree of \qquad (\qquad equations)
- When given a polynomial with a degree >2, you can use \qquad to lower the degree
- The degree of the polynomial decreases by one each time you divide
- When synthetic division is performed, if the there is no remainder, the expression is a \qquad of the polynomial
- If the remainder is not zero, then the expression is not a factor
- To do synthetic division, you must have a \qquad for every power of x
- For example, if your equation is missing an x^{2} rewrite with a \qquad
- Synthetic Division can only be used if the coefficient of $x=$ \qquad
Example \#1: $\left(x^{3}-5 x^{2}-2 x+24\right) \div(x-3)$

Step 1: Change the sign of factor:
Step 2: Write out the coefficients of each term.

Step 3: Bring down the first term. Multiply __ by this term, then add.

Is $(x-8)$ a factor of $\left(x^{2}-7 x-11\right) ?$ YES or NO

Example \#2: $\left(x^{3}-10 x^{2}+20 x+26\right) \div(x-5)$

Step 1: Change the sign of factor:
Step 2: Write out the coefficients of each term.
Step 3: Bring down the first term. Multiply __ by this term, then add.

Is $(x-5)$ a factor of $x^{3}-10 x^{2}+20 x+26 ?$ YES or NO

Example \#3: $\left(x^{3}-2 x^{2}-11 x-6\right) \div(x+2)$
Step 1: Change the sign of factor:
Step 2: Write out the coefficients of each term.

Step 3: Bring down the first term.
Multiply __ by this term, then add.

Is $(x+2)$ a factor of $x^{3}-2 x^{2}-11 x-6 ?$ YES or NO

Example \#4: $\left(x^{3}-86 x-45\right) \div(x+9)$

Step 1: Change the sign of factor:
Step 2: Write out the coefficients of each term.
Step 3: Bring down the first term.
Multiply __ by this term, then
add.

Is $(x+9)$ a factor of $x^{3}-86 x-45 ?$ YES or NO

Example \#5: $\left(2 x^{3}+28 x^{2}+86 x+60\right) \div(x+4)$

Step 1: Change the sign of factor:
Step 2: Write out the coefficients of each term.
Step 3: Bring down the first term.
Multiply _ by this term, then
add.

Is $(x+4)$ a factor of $2 x^{3}+28 x^{2}+86 x+60 ?$ YES or NO

